If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10=51
We move all terms to the left:
3x^2+10-(51)=0
We add all the numbers together, and all the variables
3x^2-41=0
a = 3; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·3·(-41)
Δ = 492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{492}=\sqrt{4*123}=\sqrt{4}*\sqrt{123}=2\sqrt{123}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{123}}{2*3}=\frac{0-2\sqrt{123}}{6} =-\frac{2\sqrt{123}}{6} =-\frac{\sqrt{123}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{123}}{2*3}=\frac{0+2\sqrt{123}}{6} =\frac{2\sqrt{123}}{6} =\frac{\sqrt{123}}{3} $
| 4-3x=-9 | | 30-x+x4x-6+16+2x=180 | | -x-12=16 | | 20=12^2x | | 14+3x=2+5x4 | | 6x-6+3x=-15 | | .2m=6 | | w=28w+23=41. | | 2x+1+5=9 | | 5n+35=2n+28 | | -4=x+8+5x | | 2.1x2.1=4 | | p/4=27 | | 5n+35=2n=28 | | 1/9(4.5)=x | | s+13=20 | | 2(5s+5)-4s=2(3s+1)-4 | | 4.5=1/9x | | -12x+17=-10X+17 | | 23=x+2-4x | | 15x-5+20=180 | | 2(2x+4)=3(x-1)+4 | | 25÷y=42 | | 2(2x+4)=3(—1)+4 | | (-5)(0.2)(-9)=x | | −19x+91=−19x+91-19x+91=-19x+91−19x+91=−19x+91 | | m/16=3/8 | | m/6=3/8 | | 8x-8+12=180 | | 6x-4x+3=4-4x+5 | | 16/q/1=4 | | 5x-7-12x=7 |